---
author: Stéphane Laurent
date: '2019-11-20'
highlighter: 'pandoc-solarized'
output:
html_document:
highlight: kate
keep_md: no
md_document:
preserve_yaml: True
variant: markdown
rbloggers: yes
tags: 'maths, statistics, R'
title: 'Five-parameters logistic regression'
---
The five-parameters logistic curve is commonly defined by $$
f(x) = A + \frac{D-A}{\Bigl(1+\exp\bigl(B(C-x)\bigr)\Bigr)^S}.
$$ Assuming $B>0$ and $S>0$,
- $A$ is the value of the horizontal asymptote when $x \to -\infty$;
- $D$ is the value of the horizontal asymptote when $x \to +\infty$;
- $B$ describes how rapidly the curve makes its transition between the
two asymptotes;
- $C$ is a location parameter, which does not have a nice
interpretation (except if $S=1$);
- $S$ describes the asymmetry of the curve (the curve is symmetric
when $S=1$).
In the case when $S=1$, the parameter $C$ is the value of $x$ for which
the corresponding value $f(x)$ is the midpoint between the two
asymptotes; moreover, the curve has an inflection point at $x = C$.
In the general case, the value of $x$ for which the corresponding value
$f(x)$ is the midpoint between the two asymptotes is $$
x_{\text{mid}} = C - \frac{\log\Bigl(2^{\frac{1}{S}}-1\Bigr)}{B}.
$$ It is obtained by solving
$\Bigl(1+\exp\bigl(B(C-x)\bigr)\Bigr)^S = 2$.
``` {.r .numberLines}
n <- 100
x <- seq(49, 60, length.out = n)
A <- 30; D <- 100; B <- 1; C <- 50; S <- 10
f <- function(x) A + (D-A) / (1 + exp(B*(C-x)))^S
y0 <- f(x)
par(mar = c(4, 4, 0.5, 1))
plot(x, y0, type = "l", cex.axis = 0.5, ylab = "f(x)")
abline(v = C, col = "green", lty = "dashed")
( xmid <- C - log(2^(1/S) - 1)/B )
## [1] 52.63424
```
``` {.r .numberLines}
abline(v = xmid, col = "red", lwd = 2)
abline(h = (A+D)/2, col = "red", lwd = 2)
```
Note that the inflection point of the curve is *not* the point
correspoding to $x_{\text{mid}}$:
``` {.r .numberLines}
library(numDeriv)
df <- grad(f, x)
par(mar = c(4, 4, 0.5, 1))
plot(x, df, type = "l", cex.axis = 0.5, ylab="f'(x)")
abline(v = xmid, col = "red", lwd = 2)
```
In practice, we are often interested in estimating $x_{\text{mid}}$. So
it is better to use this other parameterization of the five-parameters
logistic curve: $$
g(x) =
A + \frac{D-A}{{\biggl(1+\exp\Bigl(\log\bigl(2^{\frac{1}{S}}-1\bigr) + B(x_{\text{mid}}-x)\Bigr)\biggr)}^S}
$$ because fitting this curve will directly give the estimate of
$x_{\text{mid}}$ and its standard error.
Another advantage of this parameterization is that there is a way to get
a good starting value of $x_{\text{mid}}$ when one wants to fit the
five-parameters logistic regression model:
``` {.r .numberLines}
getInitial1 <- function(x, y){
s <- getInitial(y ~ SSfpl(x, A, D, xmid, inverseB),
data = data.frame(x = x, y = y))
c(A = s[["A"]],
B = 1/s[["inverseB"]],
xmid = s[["xmid"]],
D = s[["D"]],
S = 1)
}
```
I don't know how to get a good starting value for $S$, so I always take
$1$.
Sometimes, `SSfpl` can fail. Here is another function which returns some
starting values:
``` {.r .numberLines}
getInitial2 <- function(x, y){
NAs <- union(which(is.na(x)), which(is.na(y)))
if(length(NAs)){
x <- x[-NAs]
y <- y[-NAs]
}
low_init <- min(y)
high_init <- max(y)
minmax <- c(which(y == low_init), which(y == high_init))
X <- cbind(1, x[-minmax])
Y <- log((high_init-y[-minmax])/(y[-minmax]-low_init))
fit <- lm.fit(x = X, y = Y)
b_init <- fit$coefficients[[2]]
xmid_init <- -fit$coefficients[[1]] / b_init
if(b_init < 0){
b_init <- -b_init
A <- low_init
D <- high_init
}else{
A <- high_init
D <- low_init
}
c(A = A, B = b_init, xmid = xmid_init, D = D, S = 1)
}
```
Now we wrap these two functions into a single one:
``` {.r .numberLines}
getInitial5PL <- function(x, y){
tryCatch({
getInitial1(x, y)
}, error = function(e){
getInitial2(x, y)
})
}
```
And finally we can write a function for the fitting:
``` {.r .numberLines}
library(minpack.lm)
fit5pl <- function(x, y){
startingValues <- getInitial5PL(x, y)
fit <- tryCatch({
nlsLM(
y ~ A + (D-A)/(1 + exp(log(2^(1/S)-1) + B*(xmid-x)))^S,
data = data.frame(x = x, y = y),
start = startingValues,
lower = c(-Inf, 0, -Inf, -Inf, 0),
control = nls.lm.control(maxiter = 1024, maxfev=10000))
}, error = function(e){
paste0("Failure of model fitting: ", e$message)
})
if(class(fit) == "nls" && fit[["convInfo"]][["isConv"]]){
fit
}else if(class(fit) == "nls" && !fit[["convInfo"]][["isConv"]]){
"Convergence not achieved"
}else{ # in this case, 'fit' is the error message
fit
}
}
```
Let's try it on a couple of simulated samples:
``` {.r .numberLines}
set.seed(666)
nsims <- 25
epsilon <- matrix(rnorm(nsims*n, 0, 5), nrow = nsims, ncol = n)
estimates <- matrix(NA_real_, nrow = nsims, ncol = 5)
colnames(estimates) <- c("A", "B", "xmid", "D", "S")
for(i in 1:nsims){
fit <- fit5pl(x, y0 + epsilon[i,])
if(class(fit) == "nls"){
estimates[i, ] <- coef(fit)
}else{
estimates[i, ] <- c(NaN, NaN, NaN, NaN, NaN)
}
}
summary(estimates)
```
## A B xmid D
## Min. :24.19 Min. :0.8918 Min. :52.52 Min. : 98.63
## 1st Qu.:27.99 1st Qu.:0.9566 1st Qu.:52.58 1st Qu.: 99.71
## Median :29.54 Median :1.0121 Median :52.64 Median :100.31
## Mean :29.22 Mean :1.0367 Mean :52.63 Mean :100.22
## 3rd Qu.:30.18 3rd Qu.:1.1207 3rd Qu.:52.67 3rd Qu.:100.64
## Max. :32.23 Max. :1.2599 Max. :52.76 Max. :101.80
## S
## Min. : 1.001
## 1st Qu.: 2.262
## Median : 36.444
## Mean :1357.639
## 3rd Qu.:2003.601
## Max. :7261.694
The estimate of $x_{\text{mid}}$ is excellent. As you can see, the
estimate of $S$ is sometimes much larger than the true value. Let's have
a look at the worst case:
``` {.r .numberLines}
i0 <- match(max(estimates[, "S"]), estimates[, "S"])
estimates[i0, ]
## A B xmid D S
## 29.9159582 0.8917679 52.5992848 100.0519760 7261.6944532
```
``` {.r .numberLines}
# sample
par(mar = c(4, 4, 0.5, 1))
plot(x, y0 + epsilon[i0, ], col = "yellow", cex.axis = 0.6)
# true curve
curve(A + (D-A)/(1 + exp(log(2^(1/S)-1) + B*(xmid-x)))^S,
add = TRUE, col = "red", lwd = 2)
# fitted curve
with(as.list(estimates[i0, ]),
curve(A + (D-A)/(1 + exp(log(2^(1/S)-1) + B*(xmid-x)))^S,
add = TRUE, col = "blue", lwd = 2, lty = "dashed")
)
```
Thus, while the estimate of $S$ is very far from the true value of $S$,
the fitted curve correctly estimates the true curve. And in such cases,
the standard error of the estimate of $S$ is big:
``` {.r .numberLines}
fit <- fit5pl(x, y0 + epsilon[i0,])
summary(fit)
```
##
## Formula: y ~ A + (D - A)/(1 + exp(log(2^(1/S) - 1) + B * (xmid - x)))^S
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## A 2.992e+01 1.334e+00 22.424 <2e-16 ***
## B 8.918e-01 7.058e-02 12.635 <2e-16 ***
## xmid 5.260e+01 7.310e-02 719.542 <2e-16 ***
## D 1.001e+02 9.347e-01 107.038 <2e-16 ***
## S 7.262e+03 1.757e+06 0.004 0.997
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.224 on 95 degrees of freedom
##
## Number of iterations to convergence: 27
## Achieved convergence tolerance: 1.49e-08
Note that `nlsLM` provides a test of the nullity of $S$. This is not
interesting, whereas the equality $S = 1$ is of interest. So it is
better to parametrize the logistic function with $L = \log(S)$ instead
of $S$: $$
h(x) =
A + \frac{D-A}{{\biggl(1+\exp\Bigl(\log\bigl(2^{\exp(-L)}-1\bigr) + B(x_{\text{mid}}-x)\Bigr)\biggr)}^{\exp(L)}}.
$$ In this way we can get a test of $L = 0$, that is $S = 1$.